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1. Introduction

Rotating components are integral to many engineering systems, where
structural vibrations can critically impact their reliability, durability, and
overall performance [1, 2]. To mitigate and control these effects, the accu-
rate identification of modal parameters, such as natural frequencies, mode
shapes, and damping, is essential for fatigue assessment, design optimiza-
tion, and structural health monitoring (SHM) [3, 4]. However, conducting
experimental modal analysis (EMA) on rotating structures presents signifi-
cant challenges [5]. Traditional contact sensors, as accelerometers or strain
gauges, can alter the dynamic response due to mass-loading effects and are
often difficult to deploy in harsh environments or on complex geometries due
to wiring constraints and data-transmission issues [6, 7]. These constraints
have accelerated the employment of optical, non-contact techniques [8], which
are particularly well-suited for the dynamic characterization of rotating com-
ponents [9, 10], while also enabling full-field information and high-resolution
data acquisition [11–14].

For rotating structures, commonly adopted methods for structural health
monitoring include Digital Image Correlation (DIC) [15, 16], Laser Doppler
Vibrometry (LDV) [17, 18], and Shearography [19], which is particularly sen-
sitive to out-of-plane surface displacement gradients. While Infrared Ther-
mography (IRT) has been widely explored for surface temperature mapping
and defect detection in rotating machinery components [20, 21], its applica-
tion is typically limited to static thermal fields [22, 23]. In contrast, Ther-
moelastic Stress Analysis (TSA) extends the use of infrared detection to dy-
namic scenarios by capturing transient thermal responses induced by cyclic
mechanical loading [24]. Based on the thermoelastic effect, first observed
by Weber [25] in 1830 and theoretically explained by Thomson (later Lord
Kelvin) in 1853 [26], which links reversible surface temperature variations
to stress fluctuations [27], TSA enables full-field, non-contact insight into
structural behavior under dynamic excitation [28]. Recent advancements
in infrared detector technology, including enhanced spatial resolution, in-
creased sampling rates, and reduced noise levels (on the order of tens of
milliKelvin), have significantly improved the feasibility of TSA for structural
dynamics and fatigue assessment [29]. In fact, in recent years, several stud-
ies have demonstrated the viability of TSA for EMA and SHM [30, 31]. In
2020, Capponi et al. [32] introduced a modal decomposition framework for
full-field fatigue damage characterization. In 2021, Molina-Viedma et al. [33]
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explored TSA for identifying high-frequency mode shapes and later extended
the approach to multi-harmonic excitations using a periodogram-based spec-
tral analysis [34]. In 2023, Zaletelj et al. [35] proposed a strain-based EMA
method relying on TSA-derived data, while, in 2025, Šonc et al. [36] devel-
oped a multiaxial fatigue criterion using full-field TSA-based stress measure-
ments.

Despite these promising developments, the application of TSA to rotating
structures remains challenging [29]. For small-scale displacements, the edge
effects, manifesting as apparent stress concentrations near structural bound-
aries, are typically mitigated using motion compensation strategies such as
combining TSA with DIC [37, 38], optical flow-based correction [39], or blob-
detection tracking in the infrared domain [40]. However, the adaptation of
motion compensation strategies to accommodate larger-scale rotational mo-
tion remains a significant open problem for TSA-based EMA, where robust
frame-to-frame alignment is essential to reconstruct full-field, time-resolved
stress histories.

This study addresses the current lack of effective methods for applying
TSA to structures undergoing in-plane rotation, where rigid body motion
interferes with accurate stress field reconstruction. By combining thermoe-
lasticity with computer-vision techniques, the proposed method enables full-
field identification of out-of-plane structural dynamics (i.e., mode shapes) in
rotating structures. Specifically, infrared ArUco markers are employed to
track frame-to-frame transformations and revert the in-plane rigid motion of
a rotating aluminum beam subjected to random vibration. ArUco markers
are selected for their robustness to perspective distortions and partial occlu-
sions, as well as their binary grid-based unique IDs, which reduce reliance on
complex feature matching [41, 42]. Such properties make ArUco well-suited
for tracking both small and large displacements in dynamic scenarios [43–
45]. An uncertainty analysis is also performed to quantify the accuracy of
the motion compensation across different experimental conditions.

This manuscript is organized as follows. The theoretical background
of thermoelasticity, structural dynamics, and image processing is given in
Sec. 2. The proposed method for thermoelasticity-based identification of
mode shapes in rotating structures is presented in Sec. 3. Sec. 4 describes
experimental setup and infrared measurement and processing, while in Sec. 5
the results from the experimental campaign are presented and discussed.
Sec. 6 draws the conclusions.
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2. Theoretical background

2.1. Thermoelasticity
Thermoelasticity is a non-contact, high-sensitivity technique for full-field

stress measurement based on the reversible conversion between mechanical
and thermal energy when materials are subjected to external load-induced
volume changes [25, 26]. This phenomenon, known as the thermoelastic
effect, is inherently linked to the elastic and thermodynamic behavior of
materials and has been long recognized and incorporated into structural the-
ories [28]. For stresses within the elastic limit, the energy conversion is nearly
reversible (i.e., isentropic), and surface temperature variations are directly
related to the first invariant of the Cauchy stress tensor, which corresponds
to the sum of the normal stresses [29]. By coupling thermodynamic princi-
ples with continuum mechanics, the fundamental thermoelastic relation for
isotropic, plane-stress conditions can be written as [46, 47]:

∆σxx +∆σyy = −ρCσ

α

∆T

T0

, (1)

where ∆σxx and ∆σyy are the variations of the in-plane normal stresses,
ρ is the material density, Cσ is the specific heat at constant stress, α is the
coefficient of linear thermal expansion, ∆T is the surface temperature change,
and T0 is the reference temperature.

Material properties can be grouped into the thermoelastic coefficient
Km, which characterizes the sensitivity of temperature variations to stress
changes [48]. Km can be determined from literature data, experimental cali-
bration using strain gauges and Lamé theory, or numerical calculations [48].
The theoretical expression of Km is [29]:

Km = −αT0

ρCσ

. (2)

Under dynamic loading, cyclic stresses produce adiabatic temperature
oscillations proportional to the stress amplitude [49]. High-performance in-
frared detectors, combined with phase-sensitive data processing techniques,
enable the detection of these small temperature changes (typically in the
milliKelvin range) [50, 51].

By measuring the surface temperature variation ∆Ti,j(t) at each pixel
location (i, j) of a structure undergoing dynamic loading, the corresponding
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full-field stress variation ∆σi,j(t) can be approximated under a dominant
uniaxial stress assumption as:

∆σi,j(t) =
∆Ti,j(t)

Km

. (3)

This uniaxial assumption provides a useful approximation in simple cases.
For more complex structures exhibiting multiaxial stress states, the first
invariant approach remains theoretically valid; however, a comprehensive
multi-component stress analysis would be necessary for accurate quantifica-
tion.

2.2. Mode Shapes Identification
A spatial model describing the forced response of a multiple-degree-of-

freedom (MDOF) mechanical system is governed by the following equilibrium
equation [52]:

Mẍ(t) +Cẋ(t) +Kx(t) = f(t), (4)

where f(t) represents the vector of applied excitation forces, and M,C,K are
the mass, damping, and stiffness matrices, respectively. Transforming Eq. (4)
into the frequency domain under the assumption of harmonic excitation leads
to the structural response model [53]:

X(ω) = H(ω)F(ω), (5)

where H(ω) is the complex receptance frequency response function (FRF)
matrix. The FRFs carry information on the system’s natural frequencies,
mode shapes, and damping characteristics, enabling the identification of
modal parameters [52]. In experimental measurements, the FRF can be
estimated using the H1 estimator, which is defined as [52]:

H1(ω) =
GXF (ω)

GFF (ω)
, (6)

where GXF (ω) is the cross-power spectral density between the response X(ω)
and the force F (ω), and GFF (ω) is the auto-power spectral density of the
force. To extract modal parameters, the Least-Squares Complex Frequency
(LSCF) method is employed to identify system poles, which correspond to
the natural frequencies and damping from the estimated FRF [54]. The iden-
tified poles are subsequently used with the Least-Squares Frequency Domain
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(LSFD) algorithm to extract the modal constants Ax [55]. Assuming exci-
tation at a single location (z), the mode shapes can be estimated from the
modal constants as:

ϕx
n =

Ax
n

ϕz

, (7)

where Ax
n is the modal constant at the n-th location, and ϕz is the mode

shape value at the excitation point z.

2.3. Geometric transformations identification
The relationship between corresponding points P and P′ in a pair of

images undergoing a planar geometric transformation can be represented in
homogeneous coordinates (R3) as [56]:

P′ = QP, (8)

where Q ∈ R3×3 is the transformation matrix that maps points from the
original image plane to the transformed image plane. This planar transfor-
mation assumes that the points lie on a common plane and that the camera’s
optical axis is perpendicular to this plane, with primarily rotational motion
and minimal perspective distortion. Under these conditions, the mapping is
valid as a 2D projective transformation. For scenes with significant depth
variation or translation, more general models such as full projective geometry
or structure-from-motion are required [56]. The transformation matrix Q is
defined as [56]:

Q =

q11 q12 q13
q21 q22 q23
q31 q32 q33

 , (9)

and its structure determines the nature of the transformation. A general ho-
mography captures rotation, translation, scaling, shearing, and perspective
distortion [56]. However, when perspective effects are negligible, the trans-
formation simplifies to an affine form, in which the last row of Q becomes
(0, 0, 1). If, additionally, the transformation preserves distances and angles,
it further reduces to a Euclidean transformation, consisting solely of rotation
and translation. In this case, Q takes the following form [57]:
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Q =

cos θ − sin θ ri
sin θ cos θ rj
0 0 1

 . (10)

Here, θ is the rotation angle, measured counterclockwise from the positive
i-axis, and ri and rj are the translation components along the i- and j-axes,
respectively. Inverting Eq. (8) provides a means to restore transformed points
to their original reference frame by reversing the rigid motion effects, resulting
in:

P̂ = Q−1P′. (11)

Hat symbol in P̂ describes back-projected coordinates of a transformed
point into reference frame. Expanding Eq. (11) for a Euclidean transforma-
tion leads to the element-wise inverse transformation:{

î = cos θ · (i′ − ri) + sin θ · (j′ − rj),

ĵ = − sin θ · (i′ − ri) + cos θ · (j′ − rj).
(12)

3. Thermoelasticity-based identification of mode shapes in rotating
structures

In this section, the methodology developed to identify mode shapes of
rotating structures based on thermoelastic measurements is presented. The
approach consists of detecting ArUco markers in images acquired by an in-
frared camera and using them to estimate in-plane rigid rotation matrices.
These matrices are then inverted to compensate for the motion and realign
the video frames to a fixed spatial reference. This correction enables the ex-
traction of accurate and consistent temperature-based time histories. After
motion compensation, the thermoelasticity principle is used to derive full-
field stress information on the de-rotated structure, and frequency-domain
techniques are applied to reconstruct the mode shapes directly from thermal
data, enabling non-contact modal analysis of rotating structures.

Let K be the number of infrared images, where each image k captures
out-of-plane vibrations of a structure undergoing in-plane rigid motion. The
transformation matrix Qk, describing the rigid rotation between the k-th
frame and the reference frame (k = 0), is estimated using corresponding
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corners of infrared-compatible ArUco markers detected in both the k-th and
reference frames.

Let M be the number of detected markers. For each marker m (m =
1, 2, . . . ,M) and its c-th corner, let Pm,c = (im,c, jm,c, 1)

T denote the homoge-
neous coordinates in the reference frame (k = 0), and P′

m,c = (i′m,c, j
′
m,c, 1)

T

the corresponding coordinates in frame k. The transformation Qk is com-
puted to best align all P′

m,c with their counterparts Pm,c. Fig.1 illustrates
the principle of this alignment, showing how the transformation Qk and its
inverse Q−1

k are defined across frames.

Figure 1: De-rotation using the inverse transformation Q−1
k , estimated from the corners

of the m-th ArUco marker detected in both the k-th frame and the reference frame.

According to Eq. (11), once the transformation matrix Qk is obtained,
its inverse is applied to every point in frame k, effectively mapping the entire
image content back to the coordinate system of the reference frame (k = 0):

P̂ = Q−1
k P′, ∀P′ ∈ frame k. (13)

Since the final thermoelasticity-based analysis focuses on the spatial dis-
tribution of temperature fluctuations, it is essential to preserve the spatial
integrity of the de-rotated images during the transformation process. To
ensure the de-rotation method accurately reflects the true spatial distribu-
tion, the quality of the transformation needs to be evaluated. This can be
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achieved by quantifying the alignment accuracy through the Euclidean er-
ror between the transformed marker corners coordinates and their reference
positions. Such an evaluation helps validate the reliability of the estimated
transformation matrices Qk, particularly in the presence of potential issues
such as detection noise, marker occlusions, or interpolation artifacts intro-
duced during the warping process. The overall transformation accuracy can
be estimated by computing the mean value µ and standard deviation τ of
the Euclidean error µk, which is calculated for each frame k across all M
markers and their C coordinates. This error represents the deviation be-
tween the transformed marker corner coordinates P̂m,c and their reference
positions in the initial frame (k = 0). To verify that the transformation
precision is adequate, the de-rotation error should also be compared to the
characteristic spatial scales of the analyzed phenomena. For instance, when
extracting structural mode shapes, the typical mode wavelength should be
much larger than the transformation error, ensuring that spatial patterns are
not distorted by alignment inaccuracies.

The overall mean error µ and its standard deviation τ across frames are
given by:

µ =
1

K

∑
k

µk, τ =

√
1

K

∑
k

(µk − µ)2. (14)

The per-frame Euclidean error, µk, is defined as:

µk =
1

MC

M∑
m=1

C∑
c=1

∥∥∥Pm,c − P̂m,c

∥∥∥
2
, ∀k. (15)

The standard deviation within each frame, denoted as τk, is given by:

τk =

√√√√ 1

MC

M∑
m=1

C∑
c=1

(∥∥∥Pm,c − P̂m,c

∥∥∥
2
− µk

)2

. (16)

After all K frames are realigned to the reference frame (k = 0) using Q−1
k

and Eq. (11), the stress variations ∆σi,j(t) at specific spatial locations are
derived from the measured temperature signals, which are extracted from the
motion-compensated video. The stress variation ∆σ at each pixel location
(i, j), recorded at time tk, is given by:
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∆σî,ĵ(tk) = ∆σi′,j′(tk), (17)

where (i′, j′) coordinates are reverted to (̂i, ĵ) following Eq. (13). This allows
the reconstruction of the time history of stress variations at each pixel in the
reference frame:

∆σi,j(t) =
{
∆σi,j(t0),∆σî,ĵ(t1), . . . ,∆σî,ĵ(tK−1)

}
. (18)

It is worth noting that the coordinates (i, j) of the first stress variation
value in the reconstructed time history (Eq. (18)) are not marked with a
hat symbol, since the first frame is used as the reference and no backward
transformation is required for it.

Assuming the linear thermoelastic relationship between stress and tem-
perature variation (Eq. (3)), the de-rotated stress-based time histories are
obtained, and the full-field FRFs are estimated (Eq. (6)). Modal param-
eters are extracted from the FRFs using classical curve-fitting techniques,
including LSCF and LSFD methods [54, 55]. Finally, mode shapes ϕσ

i,j are
reconstructed from thermal measurements using the following expression [55]:

ϕσ
i,j =

A∆T
i,j

Km ϕσ
i∗,j∗

, (19)

where A∆T
i,j represents the temperature response amplitude at pixel (i, j),

and ϕσ
i∗,j∗ is the stress mode shape at a selected normalization point. The

coefficient Km accounts for the proportionality between temperature and
stress, as derived from the thermoelastic relationship (Eq. (18)).

4. Experimental research

This section provides a description of the setup developed for the roto-
vibration experiments, outlines the infrared measurement protocol, and dis-
cusses the data processing methodology.

4.1. Experimental setup
An aluminum beam, with dimensions 500×30×2.5 mm, was mounted on

a shaft and inserted into a clamping sleeve bearing. The assembly was then
installed on an electrodynamical shaker (Sentek L1024M), enabling out-of-
plane vibrations and allowing in-plane free rotation of the beam around its
center point (see Fig. 2).
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Figure 2: Schematic of experimental setup and infrared images collected.

To enhance the thermoelastic effect and minimize infrared reflection from
the surroundings, the top surface of the beam was coated with high-emissivity
black paint (Black Wrapper Spray, 4R) [29]. Additionally, 20×20 mm Original-
Dictionary ArUco markers were placed on the top surface to facilitate rigid-
body motion tracking and compensation [41]. The markers were manufac-
tured in-house using laser-cut black-matte vinyl layer adhered to a high-
reflectivity tape, enhancing contrast and improving marker detection in the
infrared spectrum. In this study, three ArUco markers from the Original-
Dictionary were used [41]: two positioned at each end of the beam, and one
placed on top of the center of rotation (i.e., the shaker’s vertical axis). While
additional markers could provide more corner points and enable overdeter-
mined transformations with iterative refinement (e.g., nonlinear least squares),
the chosen configuration balances geometric robustness with the need to leave
most of the structure’s surface unobstructed for subsequent infrared-based
analysis.
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For research purposes, preliminary measurements were conducted under
vibration-only conditions using a control accelerometer (PCB 352C23/NC)
installed on the shaker plate, and a response accelerometer (PCB 352C23),
installed on the top-surface of the beam, acquiring at 25600 Hz. These
measurements identified two natural frequencies below 200 Hz (27.3 Hz and
173.4 Hz). Similarly to the experimental approach adopted by Zaletelj et
al. [35], in this study the excitation amplitude was determined by gradually
increasing it to evaluate the sensitivity of the infrared camera response and
to identify the minimum detectable surface stress. Based on these findings,
the final experiments employed a pseudo-random excitation signal within the
15–200 Hz range (RMS = 13.6 g), generated by a Siemens LMS SCADAS
and amplified by a Sentek PA115 amplifier.

4.2. Infrared measurements
An infrared camera (FLIR A6751sc, equipped with a 25 mm lens) was

used to measure surface temperature variations on the beam. The camera
captures up to 400 frames per second at a resolution of 320×256 pixels, with
a Noise Equivalent Temperature Difference (NETD) of 18 mK and a 14-bit
depth resolution. The combination of frame rate, resolution, and calibrated
radiometric settings led to an integration time of 0.9781 µs, which effectively
suppressed motion blur while maintaining sufficient infrared signal quality.
The infrared imaging and acceleration data were acquired for 10 seconds,
resulting in a frequency resolution of 1/10 Hz, ensuring the same resolution
in the frequency-domain regardless of differences in sampling frequency. As
shown in Fig. 3, the infrared camera was positioned above the shaker, us-
ing a vibration-isolated tripod, at a sensor-to-target distance of 1.5 meters,
capturing approximately one quarter of the full in-plane rotation.
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Figure 3: Experimental setup: infrared camera, control accelerometer, and rotating beam
installed on the electrodynamical shaker.

Prior to the infrared-vibration measurements, the camera’s perpendicular
alignment to the rotational plane was verified by leveraging the detected cor-
ners of the same ArUco markers later used in the analysis. The markers were
expected to appear as a square with no tilt: any visible perspective distor-
tion, indicating misalignment, was adjusted accordingly. Due to symmetry
considerations and field-of-view limitations under the specified acquisition
conditions, only half-beam rotation was recorded. In this configuration, two
infrared markers were visible in the scene: one positioned at the beam’s end
(ID-0) and the other at the center of rotation (ID-1), ensuring that relevant
stress distributions remained unobstructed. The thermoelastic coefficient
Km = 2.53 × 10−9 [◦C/Pa] was obtained by averaging 10 measurements
under harmonic loading (20–110 Hz), correlating IR-measured surface tem-
perature fluctuations with local stress derived from strain gauge data via
Lamé’s equation [35]. The strain gauge (HBM 1-LY13-6/350) was placed in
a high-signal-to-noise ratio, low-gradient region [32].

To assess the impact of operating conditions on ArUco-based transfor-
mation accuracy, tests were conducted by varying the rotational speed and
camera sampling rate. The frames-per-degree metric η quantifies inter-frame
motion and enables consistent comparison across different operating scenar-
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ios. It is defined as the ratio of the sampling rate fs (in Hz) to the rotational
speed ω (in rpm), expressed as:

η =
fs

ω × 360/60
=

fs
6ω

[frames/degree], (20)

where the factor 360/60 = 6 converts ω from rpm to degrees per second.
A representative test case (0.9 rpm, 400Hz) was selected for further analy-

sis, as it provided the largest observed rotation angle (54◦) over the 10-second
measurement time while maintaining full visibility of the structure within the
camera’s field of view. Additional tests were performed to evaluate alignment
performance across a broader range of motion conditions, represented by η
values spanning from 17 to 100 frames-per-degree. These were achieved by
varying the rotational speed while maintaining a fixed sampling frequency of
400 Hz. Specifically, tests were conducted at η = 100, 74, 51, and 17, corre-
sponding to rotational speeds of approximately 0.67, 0.9, 1.3, and 3.92 rpm,
respectively. Although broader operating conditions are in principle sup-
ported by the methodology, the selected values reflect a practical balance
between coverage and the constraints of the available acquisition setup.

4.3. Infrared images processing
Each infrared video was initially processed to detect ArUco markers and

extract their corner coordinates in each frame. To ensure accurate marker
detection fin the infrared images, pre-processing steps were applied when
needed, including adaptive histogram equalization for contrast enhancement,
Gaussian blurring to suppress high-frequency noise, and adaptive threshold-
ing to highlight edge features [58]. These operations were used exclusively
to support marker detection and transformation estimation. In fact, to pre-
serve the fidelity of pixel intensities required for subsequent thermoelasticity-
based analysis, all further processing and evaluation were performed directly
on the raw, de-rotated infrared data. Marker detection was performed in-
dependently in each frame using the unique IDs of the ArUco markers [58].
This frame-by-frame detection improves robustness to temporary occlusion
and enables reliable matching even under significant motion between frames.
After detection, the marker corners were used to compute the geometric
transformation between each frame and a reference. To improve the accu-
racy of the estimated transformation, OpenCV’s built-in RANSAC-based
estimators were used to compute the mapping between marker corners [58].
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These functions apply the RANSAC algorithm to iteratively exclude outlier
correspondences, enhancing robustness to detection noise and spurious cor-
ner readings [59]. It is important to recognize that out-of-plane vibrations
cause vertical displacements, which can shift the apparent position of surface
points on the pixel grid and potentially affect the recorded pixel intensities
used in thermoelastic analysis. Although these effects are inherent to vertical
excitation, they were not explicitly quantified in this study. Nonetheless, the
experimental setup was designed to promote predominantly planar motion
and minimize significant vertical displacements.

According to the proposed methodology, the Euclidean transformation
matrices Qk were computed, and, following Eq. (12), their inverse Q−1

k were
then applied to their corresponding frames, aligning them back to the coor-
dinate system of frame k = 0. The accuracy of this reverting process was
quantified using Eq. (15) and Eq. (16).

Following spatial alignment, the stress time series were built, as per
Eq. (18), and transformed into the frequency domain, where FRFs were es-
timated using Welch’s method with a 50% Hann window function, which
reduces spectral leakage within each analysis segment and improves the sta-
bility of frequency-domain estimates. From the resulting spectral data, modal
parameters were identified, and the full-field mode shapes were obtained us-
ing Eq. (19).

5. Results and discussion

The pre-processing of the acquired infrared images enabled reliable detec-
tion of the infrared-compatible ArUco markers throughout the measurement
sequence. Fig. 4 illustrates the first, intermediate, and last infrared frames,
where the detected markers are clearly visible.
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Figure 4: Averaged first, intermediate, and last infrared images with detected ArUco
markers.

The tracked marker corner coordinates Pm,c and P′
m,c across the acqui-

sition period are shown in Fig. 5.

Figure 5: Time evolution of ArUco marker corners P′
m,c, overlaid on blended first, inter-

mediate, and last infrared images.

As expected, the bottom-left corner of the marker placed at the center of
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rotation traces a circular trajectory. In contrast, the corners of the marker
located at the beam’s free end follow a wider arc, consistent with a total
angular displacement of approximately 54° (0.9 rpm over 10 seconds).

As detailed in Sec. 3, in case of pure rigid-body rotation, a single matching
marker ID per frame pair (from frame-0 to frame-k) is sufficient to accurately
determine the Euclidean transformation, as the four corners of the marker
provide enough geometric constraints. For more complex transformations
involving deformation or marker occlusion, incorporating multiple marker
IDs per frame significantly improves transformation robustness.

Using the detected corner coordinates, the transformation matrices Qk

were computed and subsequently inverted to compensate for rotation and
realign each frame to the initial configuration. The resulting back-projected
marker coordinates P̂m,c, and the warped infrared frames, are presented in
Fig. 6.

Figure 6: Time evolution of ArUco marker corner coordinates after applying inverse trans-
formations Q−1

k to compensate for rotation.

The overall transformation accuracy was quantified by computing the
mean Euclidean error per frame, µk, and the global transformation error µ,
along with their standard deviations, τk and τ , respectively. These values re-
flect the average discrepancy between the original and back-projected marker
coordinates with respect to the frame-0 reference system.
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Figure 7: Per-frame transformation errors µk and overall transformation error µ (with
standard deviations), obtained by back-projecting marker coordinates to the frame-0 ref-
erence system.

Sub-pixel transformation errors were achieved, indicating excellent per-
formance of the proposed alignment technique. Nevertheless, it is worth
emphasizing that in thermoelasticity-based measurements, the primary fo-
cus is on spatial distributions of surface temperature variations rather than
precise point-wise alignment, as is common in kinematic-based optical meth-
ods. Therefore, even when transformation errors µ exceed the pixel level
(super-pixel errors), the alignment may still be adequate for reliable extrac-
tion of mode shapes and other global phenomena, as long as the overall
spatial distribution is preserved. Further investigation is needed to establish
acceptable thresholds for transformation errors, beyond which the fidelity
of thermoelastic signal interpretation may be compromised. Such thresh-
olds may vary depending on the spatial resolution, thermal sensitivity, and
application-specific constraints.

The influence of the frames-per-degree ratio, denoted as η, on the trans-
formation accuracy is shown in Fig. 8. This parameter captures the number
of frames acquired per degree of rotation.
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Figure 8: Effect of the frames-per-degree ratio η on transformation error µ based on ArUco
marker detection.

As expected, higher values of η, corresponding to slower motion or higher
frame rates, result in reduced inter-frame angular displacement, thereby low-
ering the transformation error. This is because smaller apparent motion
leads to more accurate marker detection and reduced geometric distortion.
Conversely, when η is low (i.e., larger inter-frame motion), the algorithm
becomes more sensitive to noise, motion blur, and environmental variabil-
ity, which can degrade the transformation accuracy. These results highlight
the importance of inter-frame motion in determining transformation accu-
racy and support the use of η as a practical metric for comparing different
acquisition scenarios. By condensing the combined effect of frame rate and
rotational speed into a single parameter, η enables consistent and scalable
evaluation of alignment performance across a range of test conditions.

Finally, classical experimental modal analysis techniques were employed
to compute the FRF of the structure from control accelerometer and ther-
mal/stress response measurements, enabling the identification of its dynamic
characteristics. Full-field mode shapes were successfully extracted from the
processed infrared image sequence. To attenuate spatial noise and enhance
the clarity of the mode shape distributions, a mild 5×5 pixel Gaussian filter
was applied to the temperature field. Fig. 9 shows an infrared snapshot,
highlighting the region of interest where the FRF and mode shapes were
computed, along with the extracted mode shapes and the corresponding FRF

19



spectrum.

Figure 9: Annotated de-rotated infrared image of the experimental setup showing the
defined region of interest (left). Extracted full-field mode shapes corresponding to the
first (top) and second (middle) natural frequencies, and the Frequency Response Function
(FRF) used to identify modal frequencies (bottom).

Two natural frequencies were identified at 27.3 Hz and 173.4 Hz, which are
in good agreement with reference measurements, preliminary performed in
the vibration-only condition. The corresponding mode shapes exhibit spatial
distributions consistent with theoretical expectations.

6. Conclusion

Rotating structures present a challenge to traditional contact-based mea-
surement techniques, especially under vibrational excitation. Optical meth-
ods like infrared thermography offer a non-contact alternative, but are typi-
cally limited to capturing static or slowly varying temperature fields. In con-
trast, thermoelasticity exploits high-speed thermal imaging to detect stress-
induced temperature fluctuations, enabling the analysis of structural vibra-
tions in rotating components.

This work demonstrates that combining thermoelastic imaging with computer-
vision techniques provides a robust, full-field approach to the non-contact
monitoring of rotating structures. Infrared-compatible ArUco markers were
used to track and compensate for rigid body rotation, allowing for the iso-
lation of dynamic thermal responses associated with structural vibrations.
While the current implementation focused on rigid rotations, the methodol-
ogy is extendable to more complex motions, including roto-translations and
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general affine transformations. Experimental modal analysis confirmed the
ability to extract full-field mode shapes from the compensated thermoelas-
tic data. An uncertainty analysis demonstrated sub-pixel accuracy of the
transformation process across varying operating conditions. In addition, the
frames-per-angle ratio was introduced as a metric to evaluate the influence
of operating and measurement scenarios on the transformation accuracy.

The integration of computer-vision and thermoelasticity offers a signifi-
cant advancement for structural health monitoring of rotating systems. This
approach enables accurate motion compensation and opens new perspectives
for real-time, non-contact diagnostics and damage detection in dynamically
loaded components.
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